Department of Labor Logo United States Department of Labor
Dot gov

The .gov means it's official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Atmospheric Scientists, Including Meteorologists

Summary

Please enable javascript to play this video.

Video transcript available at https://www.youtube.com/watch?v=2Hof_Cs5d0Y.
Quick Facts: Atmospheric Scientists, Including Meteorologists
2020 Median Pay $qf_median_annual_wage_html $qf_median_hourly_wage_html
Typical Entry-Level Education $qf_education_html
Work Experience in a Related Occupation $qf_experience_html
On-the-job Training $qf_training_html
Number of Jobs, 2020 $qf_number_jobs_html
Job Outlook, 2020-30 $qf_outlook_html
Employment Change, 2020-30 $qf_openings_html

What Atmospheric Scientists, Including Meteorologists Do

Atmospheric scientists study the weather and climate.

Work Environment

Most atmospheric scientists work indoors in weather stations, offices, or laboratories. Occasionally, they do fieldwork, which means working outdoors to examine the weather. Some atmospheric scientists may have to work extended hours during weather emergencies. 

How to Become an Atmospheric Scientist

Atmospheric scientists need a bachelor’s degree in atmospheric science or a closely related field for most positions. Those who work in research usually need a master’s degree or a Ph.D.

Pay

Job Outlook

Overall employment of atmospheric scientists, including meteorologists is projected to grow $pc.toString().replaceAll("^\-","") percent from 2020 to 2030, $gra.

About $tools.number.format('#,###',$op) openings for atmospheric scientists, including meteorologists are projected each year, on average, over the decade. Many of those openings are expected to result from the need to replace workers who transfer to different occupations or exit the labor force, such as to retire.

State & Area Data

Explore resources for employment and wages by state and area for atmospheric scientists, including meteorologists.

Similar Occupations

Compare the job duties, education, job growth, and pay of atmospheric scientists, including meteorologists with similar occupations.

More Information, Including Links to O*NET

Learn more about atmospheric scientists, including meteorologists by visiting additional resources, including O*NET, a source on key characteristics of workers and occupations.

What Atmospheric Scientists, Including Meteorologists Do About this section

Atmospheric scientists, including meteorologists
Research meteorologists study atmospheric phenomena such as lightning.

Atmospheric scientists study the weather and climate, and examine how those conditions affect human activity and the earth in general. They may develop forecasts, collect and compile data from the field, assist in the development of new data collection instruments, or advise clients on risks or opportunities caused by weather events and climate change.

Duties

Atmospheric scientists typically do the following:

  • Measure temperature, atmospheric pressure, humidity, wind speed, dew point, and other properties of the atmosphere
  • Use computer models that analyze data about the atmosphere (also called meteorological data)
  • Write computer programs to support their modeling efforts
  • Conduct research to improve understanding of weather phenomena
  • Generate weather graphics for users
  • Report current weather conditions
  • Prepare long- and short-term weather forecasts by using computers, mathematical models, satellites, radar, and local station data
  • Plan, organize, and participate in outreach programs aimed at educating the public about weather
  • Issue warnings to protect life and property when threatened by severe weather, such as hurricanes, tornadoes, and flash floods

Atmospheric scientists use highly developed instruments and computer programs to do their jobs. For example, they use weather balloons, radar systems, and satellites to monitor the weather and collect data. The data they collect and analyze are critical to understanding global warming and other issues. Atmospheric scientists also use graphics software to illustrate their forecasts and reports in order to advise their clients or the public.

Many atmospheric scientists work with other geoscientists or even social scientists to help solve problems in areas such as commerce, energy, transportation, agriculture, and the environment. For example, some atmospheric scientists work closely with hydrologists and government organizations to study the impact climate change may have on water supplies and to manage water resources.

The following are examples of types of atmospheric scientists:

Atmospheric chemists study atmospheric components, reactions, measurement techniques, and processes. They study climates and gases, chemical reactions that occur in clouds, and ultraviolet radiation.

Atmospheric physicists and dynamists study the physical movements and interactions that occur in the atmosphere. They may study how terrain affects weather and causes turbulence, how solar phenomena affect satellite communications and navigation, or they may study the causes and effects of lightning.

Broadcast meteorologists give forecasts to the general public through television, radio, and the Internet. They use graphics software to develop maps and charts that explain their forecasts. Not all weather broadcasters seen on television are meteorologists or atmospheric scientists; reporters, correspondents, and broadcast news analysts present weather conditions and forecasts, but do not have specific training in meteorology.

Climatologists study historical weather patterns to interpret long-term weather patterns or shifts in climate by using primarily statistical methods. Global climate change is the main area of study for climatologists. Paleoclimatology is a specialization within this field. Climatologists who specialize in paleoclimatology may take samples from icebergs and other sources to gather data on the atmosphere that cover very long periods of time.

Climate scientists work on the theoretical foundations and the modeling of climate change. The nature of this work requires the use of complex mathematical models to try to forecast many months, and sometimes longer, into the future. Their studies can be used to design buildings, plan heating and cooling systems, and aid in efficient land use and agricultural production.

Forensic meteorologists use historical weather data to reconstruct the weather conditions for a specific location and time. They investigate what role weather played in unusual events such as traffic accidents and fires. Forensic meteorologists may be called as experts to testify in court.

Research meteorologists develop new methods of data collection, observation, and forecasting. They also conduct studies to improve basic understandings of climate, weather, and other aspects of the atmosphere. For example, some research meteorologists study severe weather patterns that produce hurricanes and tornadoes to understand why cyclones form and to develop better ways of predicting them. Others focus on environmental problems, such as air pollution. Research meteorologists often work with scientists in other fields. For example, they may work with computer scientists to develop new forecasting software or with oceanographers to study interactions between the ocean and the atmosphere. They may also work with engineers to develop new instruments so that they can collect the data they need.

Weather forecasters use computer and mathematical models to produce weather reports and short-term forecasts that can range from a few minutes to more than a week. They develop forecasts for the general public and for specific customers such as airports, water transportation, shippers, farmers, utility companies, insurance companies, and other businesses. For example, they may provide forecasts to power suppliers so that the suppliers can plan for events, such as heat waves, that would cause a change in electricity demand. They also issue advanced warnings for potentially severe weather, such as blizzards and hurricanes. Some forecasters prepare long-range outlooks to predict whether temperatures and precipitation levels will be above or below average in a particular month or season. These workers become familiar with general weather patterns, atmospheric predictability, precipitation, and forecasting techniques.

Some people with an atmospheric science background may become professors or postsecondary teachers.

Work Environment About this section

Atmospheric scientists, including meteorologists
Many atmospheric scientists work at weather stations located throughout the country.

In the federal government, most atmospheric scientists work as weather forecasters with the National Weather Service of the National Oceanic and Atmospheric Administration (NOAA) in weather stations throughout the United States—at airports, in or near cities, and in isolated and remote areas. In smaller stations, they often work alone; in larger ones, they work as part of a team. In addition, hundreds of members of the Armed Forces are involved in atmospheric science.

Atmospheric scientists involved in professional, scientific, and technical services or research often work in offices and laboratories. Some may travel frequently to collect data in the field and to observe weather events, such as tornadoes, up close. They also observe actual weather conditions from the ground or from an aircraft.

Broadcast meteorologists present their reports to the general public from television and radio studios. They also may broadcast from outdoor locations to tell audiences about current weather conditions.

Atmospheric scientists who work in private industry may have to travel to meet with clients or to gather information in the field. For example, forensic meteorologists may need to collect information from the scene of an accident as part of their investigation.

Work Schedules

Most atmospheric scientists work full time. Weather conditions can change quickly, so weather forecasters need to continuously monitor conditions. Many, especially entry-level staff at field stations, work rotating shifts to ensure staff coverage for all 24 hours in a day. For this reason, they may work nights, weekends, and holidays. In addition, they may work extended hours during severe weather, such as hurricanes. Some work more than 40 hours per week. Other atmospheric scientists have a standard workweek, although researchers may work nights and weekends on particular projects. 

How to Become an Atmospheric Scientist About this section

Atmospheric scientists, including meteorologists
Atmospheric scientists issue warnings for severe weather.

Atmospheric scientists need a bachelor’s degree in meteorology or a closely related earth sciences field for most positions. For research positions, atmospheric scientists need a master’s degree at minimum, but usually will need a Ph.D.

Education

Atmospheric scientists typically need a bachelor’s degree, either in atmospheric science or a related scientific field that specifically studies atmospheric qualities and phenomena. Bachelor’s degrees in physics, chemistry, or geology are usually adequate, alternative preparation for those who wish to enter the atmospheric sciences. Prospective meteorologists usually take courses outside of the typical atmospheric sciences field.

Course requirements, in addition to courses in meteorology and atmospheric science, usually include advanced courses in physics and mathematics. Classes in computer programming are important because many atmospheric scientists have to write and edit the computer software programs that produce forecasts. Coursework in remote sensing of the environment, by radar or satellite, may be required.

Atmospheric scientists who work in research must at least have a master’s degree, but will usually need a Ph.D. in atmospheric science or a related field. Most graduate programs do not require prospective students to have a bachelor’s degree in atmospheric science; a bachelor’s degree in mathematics, physics, or engineering is excellent preparation for graduate study in atmospheric science. In addition to advanced meteorological coursework, graduate students take courses in other disciplines, such as oceanography and geophysics.

Important Qualities

Analytical skills. Atmospheric scientists must be able to focus for many hours, working with computer models and massive amounts of data to prepare analyses on their findings.

Communication skills. Atmospheric scientists need to be able to write and speak clearly so that their knowledge about the weather can be used effectively by communities and individuals.

Critical-thinking skills. Atmospheric scientists need to be able to analyze the results of their computer models and forecasts to determine the most likely outcome.

Math skills. Atmospheric scientists use calculus, statistics, and other advanced topics in mathematics to develop models used to forecast the weather. They also use mathematical calculations to study the relationship between properties of the atmosphere, such as how changes in air pressure may affect air temperature.

Training

Atmospheric scientists and meteorologists who find employment in the National Weather Service will need to take training when they begin employment to be able to use equipment needed to issue warnings of severe weather.

Other experience

The National Weather Service offers opportunities for students through internship, fellowship, volunteer, and scholarship programs.

Pay About this section

Atmospheric Scientists, Including Meteorologists

Median annual wages, May 2020

Physical scientists

$83,250

Total, all occupations

$41,950

 

Most atmospheric scientists work full time. Weather conditions can change quickly, so weather forecasters need to continuously monitor conditions. Many, especially entry-level staff at field stations, work rotating shifts to ensure staff coverage for all 24 hours in a day, and they may work on nights, weekends, and holidays. In addition, they may work extended hours during severe weather, such as hurricanes. Some work more than 40 hours per week. Other atmospheric scientists have a standard workweek, although researchers may work nights and weekends on particular projects. 

Job Outlook About this section

Atmospheric Scientists, Including Meteorologists

Percent change in employment, projected 2020-30

Total, all occupations

8%

Physical scientists

7%

 

Overall employment of atmospheric scientists, including meteorologists is projected to grow $pc.toString().replaceAll("^\-","") percent from 2020 to 2030, $gra.

About $tools.number.format('#,###',$op) openings for atmospheric scientists, including meteorologists are projected each year, on average, over the decade. Many of those openings are expected to result from the need to replace workers who transfer to different occupations or exit the labor force, such as to retire.

Employment

Employment of atmospheric scientists, including meteorologists is projected to grow 8 percent from 2018 to 2028, faster than the average for all occupations.

New types of computer models have vastly improved the accuracy of forecasts and allowed atmospheric scientists to tailor forecasts to specific purposes. This should maintain, and perhaps increase, the need for atmospheric scientists working in private industry as businesses demand more specialized weather information.

Businesses increasingly rely on just-in-time delivery to avoid the expenses incurred by traditional inventory management methods. Severe weather can interrupt ground or air transportation and delay inventory delivery. Businesses have begun to maintain forecasting teams around the clock to advise delivery personnel, and this availability helps them stay on schedule. In addition, severe weather patterns have become widely recognizable, and industries have become increasingly concerned about their impact, which will create demand for work in atmospheric science.

As utility companies continue to adopt wind and solar power, they must depend more heavily on weather forecasting to arrange for buying and selling power. This should lead to increased reliance on atmospheric scientists employed in firms in professional, scientific, and technical services to help utilities know when they can sell their excess power, and when they will need to buy.

Job Prospects

Prospective atmospheric scientists should expect continued competition because the number of graduates from meteorology programs is expected to exceed the number of job openings requiring only a bachelor’s degree. Workers with a graduate degree should have better prospects than those with a bachelor’s degree only. Prospective atmospheric scientists with knowledge of advanced mathematics also will have better job prospects because of the highly quantitative nature of much of this occupation’s work.

Competition may be strong for research positions at colleges and universities because of the limited number of positions available. In addition, hiring by federal agencies is subject to budget constraints. The best job prospects for meteorologists are expected to be in private industry.

The National Weather Service and the University Corporation for Atmospheric Research (UCAR) sponsor an online training program called COMET. Completing such coursework may help prospective atmospheric scientists to have better job prospects.

Employment projections data for atmospheric scientists, including meteorologists, 2020-30
Occupational Title SOC Code Employment, 2020 Projected Employment, 2030 Change, 2020-30 Employment by Industry
Percent Numeric

SOURCE: U.S. Bureau of Labor Statistics, Employment Projections program

Atmospheric and space scientists

19-2021 10,700 11,600 8 900 Get data

State & Area Data About this section

Occupational Employment and Wage Statistics (OEWS)

The Occupational Employment and Wage Statistics (OEWS) program produces employment and wage estimates annually for over 800 occupations. These estimates are available for the nation as a whole, for individual states, and for metropolitan and nonmetropolitan areas.

Projections Central

Occupational employment projections are developed for all states by Labor Market Information (LMI) or individual state Employment Projections offices. All state projections data are available at www.projectionscentral.com. Information on this site allows projected employment growth for an occupation to be compared among states or to be compared within one state. In addition, states may produce projections for areas; there are links to each state’s websites where these data may be retrieved.

CareerOneStop

CareerOneStop includes hundreds of occupational profiles with data available by state and metro area. There are links in the left-hand side menu to compare occupational employment by state and occupational wages by local area or metro area. There is also a salary info tool to search for wages by zip code.

Similar Occupations About this section

This table shows a list of occupations with job duties that are similar to those of atmospheric scientists, including meteorologists.

Occupation Job Duties ENTRY-LEVEL EDUCATION Help on Entry-Level Education 2020 MEDIAN PAY Help on Median Pay
Computer programmers Computer Programmers

Computer programmers write and test code that allows computer applications and software programs to function properly.

$qf_education_html $qf_median_annual_wage_html
Environmental engineers Environmental Engineers

Environmental engineers use the principles of engineering, soil science, biology, and chemistry to develop solutions to environmental problems.

$qf_education_html $qf_median_annual_wage_html
Environmental scientists and specialists Environmental Scientists and Specialists

Environmental scientists and specialists use their knowledge of the natural sciences to protect the environment and human health.

$qf_education_html $qf_median_annual_wage_html
Geoscientists Geoscientists

Geoscientists study the physical aspects of the Earth.

$qf_education_html $qf_median_annual_wage_html
Hydrologists Hydrologists

Hydrologists study how water moves across and through the Earth’s crust.

$qf_education_html $qf_median_annual_wage_html
Mathematicians Mathematicians and Statisticians

Mathematicians and statisticians analyze data and apply mathematical and statistical techniques to help solve problems.

$qf_education_html $qf_median_annual_wage_html
Physicists and astronomers Physicists and Astronomers

Physicists and astronomers study the ways in which various forms of matter and energy interact.

$qf_education_html $qf_median_annual_wage_html
Postsecondary teachers Postsecondary Teachers

Postsecondary teachers instruct students in a wide variety of academic and technical subjects beyond the high school level.

$qf_education_html $qf_median_annual_wage_html

Contacts for More Information About this section

For more information about atmospheric scientists, including a list of colleges and universities offering atmospheric science programs, visit

American Meteorological Society

For a broad range of information concerning atmospheric scientists within the geosciences perspective, visit

American Geosciences Institute

For more information about atmospheric science careers in research, visit

University Corporation for Atmospheric Research (UCAR)

For more information about federal government education requirements for atmospheric science positions, visit

U.S. Office of Personnel Management

For more information about the COMET training program, visit

MetEd

To find job openings for atmospheric scientists in the federal government, visit

USAJOBS

For more information about federal government atmospheric science careers in the National Weather Service and other agencies within the National Oceanic and Atmospheric Administration, visit

National Oceanic and Atmospheric Administration, National Weather Service

Suggested citation:

Bureau of Labor Statistics, U.S. Department of Labor, Occupational Outlook Handbook, Atmospheric Scientists, Including Meteorologists,
at https://www.bls.gov/ooh/life-physical-and-social-science/atmospheric-scientists-including-meteorologists.htm (visited September 11, 2024).

Last Modified Date: Wednesday, September 4, 2019

What They Do

The What They Do tab describes the typical duties and responsibilities of workers in the occupation, including what tools and equipment they use and how closely they are supervised. This tab also covers different types of occupational specialties.

Work Environment

The Work Environment tab includes the number of jobs held in the occupation and describes the workplace, the level of physical activity expected, and typical hours worked. It may also discuss the major industries that employed the occupation. This tab may also describe opportunities for part-time work, the amount and type of travel required, any safety equipment that is used, and the risk of injury that workers may face.

How to Become One

The How to Become One tab describes how to prepare for a job in the occupation. This tab can include information on education, training, work experience, licensing and certification, and important qualities that are required or helpful for entering or working in the occupation.

Pay

The Pay tab describes typical earnings and how workers in the occupation are compensated—annual salaries, hourly wages, commissions, tips, or bonuses. Within every occupation, earnings vary by experience, responsibility, performance, tenure, and geographic area. For most profiles, this tab has a table with wages in the major industries employing the occupation. It does not include pay for self-employed workers, agriculture workers, or workers in private households because these data are not collected by the Occupational Employment Statistics (OES) survey, the source of BLS wage data in the OOH.

State & Area Data

The State and Area Data tab provides links to state and area occupational data from the Occupational Employment Statistics (OES) program, state projections data from Projections Central, and occupational information from the Department of Labor's CareerOneStop.

Job Outlook

The Job Outlook tab describes the factors that affect employment growth or decline in the occupation, and in some instances, describes the relationship between the number of job seekers and the number of job openings.

Similar Occupations

The Similar Occupations tab describes occupations that share similar duties, skills, interests, education, or training with the occupation covered in the profile.

Contacts for More Information

The More Information tab provides the Internet addresses of associations, government agencies, unions, and other organizations that can provide additional information on the occupation. This tab also includes links to relevant occupational information from the Occupational Information Network (O*NET).

2018 Median Pay

The wage at which half of the workers in the occupation earned more than that amount and half earned less. Median wage data are from the BLS Occupational Employment Statistics survey. In May 2018, the median annual wage for all workers was $38,640.

On-the-job Training

Additional training needed (postemployment) to attain competency in the skills needed in this occupation.

Entry-level Education

Typical level of education that most workers need to enter this occupation.

Work experience in a related occupation

Work experience that is commonly considered necessary by employers, or is a commonly accepted substitute for more formal types of training or education.

Number of Jobs, 2018

The employment, or size, of this occupation in 2018, which is the base year of the 2018-28 employment projections.

Job Outlook, 2018-28

The projected percent change in employment from 2018 to 2028. The average growth rate for all occupations is 5 percent.

Employment Change, 2018-28

The projected numeric change in employment from 2018 to 2028.

Entry-level Education

Typical level of education that most workers need to enter this occupation.

On-the-job Training

Additional training needed (postemployment) to attain competency in the skills needed in this occupation.

Employment Change, projected 2018-28

The projected numeric change in employment from 2018 to 2028.

Growth Rate (Projected)

The percent change of employment for each occupation from 2018 to 2028.

Projected Number of New Jobs

The projected numeric change in employment from 2018 to 2028.

Projected Growth Rate

The projected percent change in employment from 2018 to 2028.

2018 Median Pay

The wage at which half of the workers in the occupation earned more than that amount and half earned less. Median wage data are from the BLS Occupational Employment Statistics survey. In May 2018, the median annual wage for all workers was $38,640.